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ABSTRACT
It can often be useful for an information retrieval (IR) practitioner
to analyze the behaviour of the similarity function of an IR model
in terms of the three fundamental aspects: a) frequency of a term in
a document, b) frequency of a term in a collection and c) the length
of a document, in order to optimize the relative importance of each
component for a particular document collection and type of queries.
The importance of the model explanations in terms of the funda-
mental components is potentially more useful for neural models,
where the overall similarity function is not a closed-form functional
typical of traditional IR models. We propose a general methodology
for approximating an IR model as the coefficients of a linear func-
tion of these three fundamental aspects (and an additional aspect
of semantic similarity between terms for neural models), which
can potentially assist with optimization of the relative importance
of each aspect for a specific task. Our analysis shows that these
coefficients are useful to compare a model’s different parametric
instantiations btween alternative models.
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1 INTRODUCTION
Both traditional statistical and neural models of information re-
trieval (IR) involve aggregation of non-linear functions of individ-
ual per-document term matching weights along with global term
statistics (e.g. logarithm of term frequency, reciprocal of collection
frequency of a term etc.) to compute an overall similarity score,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401286

𝑠 (𝐷,𝑄), between each document𝐷 , with respect to a query𝑄 . Exist-
ing research has investigated whether standard ranking functions
(e.g. BM25 or LM) satisfy a set of expected behavioural contracts or
axioms [3]. An example of such an axiom is that the rate of increase
in the document score for a query, 𝑠 (𝑄, 𝐷), should decrease with
an increase in term frequency of a matched query term 𝑞 ∈ 𝑄 . Such
axiomatic analysis can be useful in extending this set of axioms, e.g.
to account for non-exact or semantic term matches [4], and may
eventually help to construct novel similarity functions. In contrast
to this axiomatic thread, previous research has also represented a
similarity function as a parameterized linear function of features,
where each one maps to a concept (a term or a phrase, or a class of
terms). The parameter values of such linear functions are tuned by
coordinate ascent for a given collection and a set of queries [6].

Different from the axiomatic approach [3, 4], which involves
manually analyzing if a model respects a set of axiomatic con-
straints, we propose an automated method of representing any
given similarity function with a set of parameters. These parame-
ters, instead of corresponding to concepts [6], rather correspond to
the fundamental building blocks of a standard IR similarity func-
tion, namely: i) the term frequency of a term in a document, ii)
the document or collection frequency of a term (an estimate of its
global informativeness measure), and iii) the length of a document.
This enables us to represent a retrieval model as a point in this
3-dimensional function space.

We hypothesize that representing an IR model as a point in a
function space, comprised of a set of three fundamental functional
components, helps to provide an explanation of the working princi-
ple of the model. The questions these explanations could potentially
address are: a) differences within a ranking model: what are the fun-
damental factors that cause a particular document 𝐷 to be ranked
at position 𝑟 whereas another document 𝐷 ′ at 𝑟 ′(> 𝑟 )?, and b)
differences across ranking models: what are the relative effects of
the fundamental factors that cause a document 𝐷 to be retrieved at
substantially different positions - 𝑟𝑀 and 𝑟 ′

𝑀
, by two models𝑀 and

𝑀 ′, respectively. Our analysis shows that the proposed coefficients,
which represent the relative importance of the three fundamental
aspects, are useful to compare between a model’s different paramet-
ric instantiations, or even to compare between different models.

2 RELATEDWORK
Standard approaches of instance-wise explanations for classification
include those of employing linear regression to learn a simplified
decision boundary by sampling points around a data instance [8],
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applying a deep convolutional network to estimate instance-wise
feature importance [2] etc. Specific to the domain of images, it is a
standard practice to conduct importance analysis of different (ab-
stract data representation) layers of a network [7, 12]. Explanations
in IR mainly involve estimating the relative importance of matches
in term weights [10, 11]. In contrast, the explanations provided by
our model are in a different space (specifically the function space
instead of the term space). We argue that such explanations can po-
tentially be useful to explain results across different models, which
is difficult to achieve with only term-level importance.

3 APPROXIMATING RANKING MODELS
Before describing a general approach of parametric approximation
of a given similarity function 𝑠 (𝐷,𝑄), we review the similarity
functions of the standard ranking models used in our investigations.

Ranking Model Components. Standard statistical models in
IR involve a closed-form similarity function, 𝑠 (𝑄, 𝐷) of the form

𝑠 (𝑄,𝐷) =
∑

𝑞∈𝑄∩𝐷
𝑠 (𝑞, 𝐷), 𝑠 (𝑞, 𝐷) = Φ(𝜙𝑥 (𝑞, 𝐷), 𝜙𝑦 (𝐷), 𝜙𝑧 (𝑞)), (1)

involving aggregation over a set of per-term similarity scores,
𝑠 (𝑞, 𝐷), each of which is, in turn, a function of:
(1) 𝜙𝑥 (𝑞, 𝐷) : Z ↦→ R is a function that transforms an integer raw

frequency of a term 𝑞 in a document 𝐷 , 𝑥 = 𝑓 (𝑞, 𝐷) ∈ Z, to a
real number, e.g. 𝜙𝑥 (𝑥) = {

√
𝑥, log(𝑥) . . .}.

(2) 𝜙𝑦 (𝐷) : Z ↦→ R is a function that transforms the integer value
of the length of a document 𝑦 = |𝐷 |, to a real number, e.g.
𝜙𝑦 (𝑦) = 𝑦−1 etc.

(3) 𝜙𝑧 (𝑞) : Z ↦→ R is a function that transforms the number of
documents across the whole collection in which the term 𝑡

occurs , 𝑧 = 𝑐 (𝑞) (an integer), to a real, e.g. 𝜙𝑧 (𝑧) = 𝑧−1 etc.
Different ranking models prescribe alternative ways of defining the
functions 𝜙𝑥 , 𝜙𝑦 and 𝜙𝑧 , e.g., the BM25 similarity [9] is defined as,

𝑠 (𝑞, 𝐷) = 𝑁

𝑙𝑜𝑔(𝑐 (𝑞))
𝑓 (𝑞, 𝐷) (𝑘1 + 1)

𝑓 (𝑞, 𝐷) + 𝑘1 (1 − 𝑏 + 𝑏 |𝐷 |
ˆ|𝐷 |
)
, (2)

where 𝜙𝑥 (𝑥) = 𝑥 , 𝜙𝑧 (𝑧) ∝ 𝑧−1, and 𝜙𝑦 (𝑦) ∝ 𝑦−1 (𝑁 is the number
of documents, and ˆ|𝐷 | is the average document length in the collec-
tion). The parameters 𝑘1 and 𝑏 in BM25 control the relative effects
of term frequency and document lengths.

Lack of Transparency in Neural Models. Generally speak-
ing, deep neural models such as DRMM [5] employ pairwise learn-
ing to rank, where a triplet loss function of the form

L(𝑞, 𝐷+, 𝐷−;Θ) = max(0, 1 − 𝑠 (𝑞, 𝐷+) + 𝑠 (𝑞, 𝐷−)), (3)

which seeks to learn to predict a higher score for a relevant docu-
ment 𝐷+ with respect to a non-relevant one (𝐷−). The features on
which DRMM applies a convolution-based feed-forward network
are binned histograms of term-match score distributions (weighted
by inverse document frequencies). However, is is difficult to see
what effects term frequency, 𝜙𝑥 , and document length functions,
𝜙𝑦 play in the overall predicted score of DRMM.

Consider a question of the form - why does a model 𝑀 rank a
document 𝐷 at position 𝑟 > 1 (say 5) instead of retrieving it at rank
1. If 𝑀 is a statistical model (e.g. BM25 or LM), it is possible for

an IR practitioner (with a working knowledge of the model) to
compute the values of term frequencies and collection statistics of
matched terms in the document 𝐷 , along with the length of 𝐷 , and
to compare these values with the top-ranked document retrieved
by another model (say 𝐷𝑡𝑜𝑝 ). We hypothesize that aligning these
compared values can be helpful in answering the question, e.g., if 𝑏
is set to a high value in BM25, then it could be seen from Equation 2
that BM25 should favour shorter documents. If |𝐷 | < |𝐷𝑡𝑜𝑝 |, an IR
practitioner could see why 𝐷 is ranked at position 5, as compared
to 𝐷𝑡𝑜𝑝 . However, it is not possible to conduct an analysis of this
manner for the case of neural models, such as DRMM [5].

Functional Representation of an IR Model. We represent
the similarity score of an IR model, 𝑀 , as a 3-dimensional vector
of coefficients of the components, 𝜙 = (𝜙𝑥 , 𝜙𝑦, 𝜙𝑧) of a similarity
scoring function 𝑠 (𝑞, 𝐷) of Equation 1. The input to our regression
model is a 3-dimensional vector of term weights of the form

(𝑥,𝑦, 𝑧)𝑤,𝐷 = (𝜙𝑥 (𝑤,𝐷)
def
= 𝑓 (𝑤,𝐷), 𝜙𝑦 (𝐷)

def
= |𝐷 |, 𝜙𝑧 (𝑤) def

= 𝑐 (𝑤))
(4)

The regressed (output) values correspond to the score assigned by
an IR model𝑀 to a term𝑤 in relation to the event of its match in
a document 𝐷 . Additionally, for a neural model we extend this 3-
dimensional functional space to 4 dimensions, where the additional
dimension, denoted as

𝜙𝜔 (𝑤, 𝑡, 𝐷) = w · t, 𝑤, 𝑡 ∈ 𝐷, (5)

corresponds to the similarity between the embedded vector rep-
resentations of terms 𝑤 and 𝑡 in a document 𝐷 . The rationale of
including this additional feature is to account for the non-exact
term matches contributing to the aggregated similarity score [5].

To capture the relative differences in the term weights across
different documents that are ranked by𝑀 , it is required to compute
the regression model over a set of documents, which in this case
corresponds to the top-𝐾 retrieved documents by the model 𝑀 ,
D𝑘 (𝑀). Specifically, the training data comprises input-output value
mappings of the form

𝜃𝑥𝑥 + 𝜃𝑦𝑦 + 𝜃𝑧𝑧 + 𝜃0 = 𝑠 (𝑤,𝐷), ∀𝑤 ∈ 𝐷, ∀𝐷 ∈ D𝑘 (𝑀), (6)

where 𝑠 (𝑤,𝐷) denotes the predicted score of a term𝑤 in document
𝐷 . The 4-dimensional parameter vector 𝜃 = (𝜃0, 𝜃𝑥 , 𝜃𝑦, 𝜃𝑧) ∈ R4

(including the additional bias term) is learned by minimizing the 𝐿2-
regularized square loss function with stochastic gradient descent.

L(𝜃 ) = (𝑠 (𝑤,𝐷) − 𝑠 (𝑤,𝐷 ;𝜃 ))2 + |𝜃 |2 (7)

The number of training data instances and their values thus de-
pend on the parameter 𝐾 (the number of top ranked documents to
consider) and the set of unique terms found in the set D𝑘 (𝑀).

4 INTERPRETABILITY OF MODELS
To compare the generic characteristics of two retrieval models𝑀1
and 𝑀2 (note that 𝑀1 and 𝑀2 could be the same function with
different parameters, e.g. BM25 with two different instances for
(𝑘1, 𝑏)), we first obtain a number of estimated versions of the same
model𝑀 using each query from the set Q, and then compute the
average of these per-query parameter vectors. Formally,

𝜃 (𝑀,Q) = 1
|Q|

∑
𝑄 ∈Q

𝜃 (𝑄,D𝑘 (𝑀)), (8)
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where 𝜃 (𝑄,D𝑘 (𝑀)) denotes the parameters learned with linear
regression (Equation 7) using query 𝑄 , and the top documents,
D𝑘 (𝑀), retrieved with model 𝑀 . Since each ranking model 𝑀 is
approximated using the same set of queries and the same set of
features (term-frequency, document length etc.), each belongs to a
common vector space equipped with the usual linear operations
and inner product between the vectors (in this case, functions).
This means that the magnitudes and the directions (signs) of these
estimated vectors can be interpreted in the following ways.
(1) Magnitude: |𝜃𝑖 (𝑀1,Q)| > |𝜃𝑖 (𝑀2,Q)|, indicates that𝑀1 puts

more emphasis on the value of the 𝑖𝑡ℎ feature component than
𝑀2 in computing the overall similarity score. For example, if the
𝑖𝑡ℎ component of the parameter vector, 𝜃𝑖 (𝑀1,Q), corresponds
to the term-frequency feature, i.e. 𝑖 = 1 in Equation 4 indicating
𝜙𝑥 , we could argue that a match in term-frequency plays a
higher role in computing the overall score in𝑀1 than𝑀2.

(2) Direction: sgn(𝜃𝑖 (𝑀1,Q)), i.e. the direction of the slope of the
𝑖𝑡ℎ component of the parameter vector indicates whether the
overall similarity function Φ (Equation 1) increases (for positive
slope values) or decreases (otherwise).

Explanation within a Ranking Model. After presenting a
general interpretation on the models themselves, we now delve
into understanding the relative characteristics of documents and
term importance measures that a model𝑀 considers for obtaining
the scores. The question that we seek to address is
Q1: Why does a model𝑀 retrieve a document 𝐷1 at rank 𝑟1 and 𝐷2

at 𝑟2 (𝑟2 > 𝑟1 without loss of generality) for a query 𝑄?
This question is more relevant in cases when𝐷2 is a known relevant
document, and an IR practitioner needs to know what characteris-
tics of𝐷2 could be exploited (possibly by applying a different model
that is better able to leverage those characteristics) to improve its
rank. To understand document characteristics at a relative level, we
propose to use a reference document, which in our case is the top-
ranked document retrieved by𝑀 for query 𝑄 , D𝑡𝑜𝑝 (𝑀 ;𝑄). To see
the relative differences in the values of the functional components
for a document 𝐷 , we first define an aggregate function (averaging
operation) over the values of these features (Equation 4), e.g. for
the term-frequency feature this is defined as

𝜙𝑥 (𝐷) =
1

|𝑄 ∩ 𝐷 |
∑

𝑤∈ |𝑄∩𝐷 |
𝜙𝑥 (𝑤,𝐷), (9)

and so on for feature components 𝑦 and 𝑧. The average relative
differences between the feature values between a document 𝐷1
retrieved at a position 𝑟1 (> 1) and the top ranked document 𝐷𝑡𝑜𝑝

are then computed using Equation 9, e.g., the relative difference
between 𝐷 and 𝐷𝑡𝑜𝑝 for the term-frequency component is given
by

Δ𝑥,𝐷,𝐷𝑡𝑜𝑝
=
𝜙𝑥 (𝐷𝑡𝑜𝑝 ) − 𝜙𝑥 (𝐷)

𝜙𝑥 (𝐷𝑡𝑜𝑝 )
, (10)

and so on for components 𝑦, 𝑧 etc. We then define an intrinsic
fidelity measure as the dot-product (similarity) between the param-
eter vector 𝜃 and the average vector of the feature values computed
as per Equation 10, i.e.,

𝜉 (𝐷,𝐷𝑡𝑜𝑝 ) = (Δ𝑥,𝐷,𝐷𝑡𝑜𝑝
,Δ𝑦,𝐷,𝐷𝑡𝑜𝑝

,Δ𝑧,𝐷,𝐷𝑡𝑜𝑝
) · 𝜃 . (11)

To see why such agreements between the feature values and the
estimated coefficients may indicate an intrinsic fidelity measure,
consider the example when Δ𝑥,𝐷,𝐷𝑡𝑜𝑝

> 0, which indicates that
the aggregate term frequency averaged over the matched query
terms of 𝐷𝑡𝑜𝑝 is higher than that of 𝐷 . An estimated value of the
coefficient 𝜃𝑥 > 0, in turn, indicates that a document score should
increase with increasing values of the matched term frequencies.
Since 𝐷 is retrieved at a higher position than 𝐷𝑡𝑜𝑝 , this is an exam-
ple of a consistent observation. On the other hand a value of 𝜃𝑥 < 0
predicts a decrease of document scores with increasing values of
the matched term frequencies, and is an example of an inconsistent
observation. The same argument applies for the other two consis-
tent and inconsistent cases, i.e. when Δ𝑥,𝐷,𝐷𝑡𝑜𝑝

< 0, and 𝜃𝑥 < 0
and > 0 respectively. Similar arguments also apply for the fidelity
measures corresponding to the other features, i.e., document length,
term informativeness, etc.

To explicitly answerQ1, we compute the cases where the fidelity
scores, 𝜉𝛾 (𝐷2, 𝐷1) > 0, 𝛾 = {𝑥,𝑦, 𝑧}, and the matched values of
the corresponding feature components (e.g. 𝑥 representing term
frequency) act as the plausible explanation for Q1.

Explanation across Ranking Models. In contrast to the ear-
lier case, where we compared between document pairs retrieved at
different positions by a single model, we now ask the question
Q2: Why does a model 𝑀1 retrieve a document 𝐷 at position 𝑟1,

whereas model𝑀2 retrieves 𝐷 at 𝑟2 for a query 𝑄?
We require the notion of two reference documents, the top-documents
retrieved by𝑀1 and𝑀2, to see if the functional representations are
satisfactory. Specifically, we consider the case where the relative
decrease in the score of 𝐷 in𝑀1 (with respect to its top document)
is higher than that of 𝐷 in𝑀2, i.e.,

Δ𝑠 (𝐷,𝑀1, 𝑀2) = 𝛿𝑠 (𝑄,𝐷,𝑀2) − 𝛿𝑠 (𝑄, 𝐷,𝑀1), where

𝛿𝑠 (𝑄,𝐷,𝑀) =
𝑠 (𝑄, 𝐷𝑡𝑜𝑝 , 𝑀) − 𝑠 (𝑄, 𝐷,𝑀)

𝑠 (𝑄, 𝐷𝑡𝑜𝑝 , 𝑀) .
(12)

Considering 𝑀1 as the reference (without loss of generality), we
now define a fidelity score across different models𝑀1 and𝑀2 by

𝜉 (𝑀1, 𝑀2) = Δ𝑠 (𝐷,𝑀1, 𝑀2) · Δ(𝑀1, 𝑀2), where
Δ(𝑀1, 𝑀2) = 𝜃 (𝑀1, 𝑄) − 𝜃 (𝑀2, 𝑄)

(13)

Similar to the argument for document pairs within a model, it can
be seen that the fidelity score corresponding to a component, e.g.
𝜉𝑥 > 0 means an agreement between the relative decreases between
the score values and the term-frequency coefficients between two
models. If both of these are positive, it can be argued that a higher
importance of term frequency in 𝑀1 (since 𝜃𝑥 (𝑀1) > 𝜃𝑥 (𝑀2))
contributes to a higher decrease in the relative score of 𝐷 in 𝑀2.
Similar arguments also apply for other feature components.

To explicitly answerQ2, we compute the cases where the fidelity
scores, 𝜉𝛾 (𝑀1, 𝑀2) > 0, 𝛾 = {𝑥,𝑦, 𝑧}, and the matched values of the
corresponding feature components (e.g. 𝑥 for term frequency) act
as the plausible explanation for Q2.

5 EVALUATION
We conducted experiments on the MS-Marco dataset [1], a collec-
tion of over 8.8M passages (avg. length of 56.2 words). To quantita-
tively measure the fidelity of our explanation model, we sampled a
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Figure 1: Box-plot of parameter vectors 𝜃 for BM25, LM-JM,
LM-Dir and DRMM (in order from left-right).

Table 1: Explaining differences within a rankingmodel for a
sample query in the MS-Marco dataset. Positive fidelity val-
ues (𝜉𝛾 > 0) are bold-faced. ↑ (↓)’s indicate whether sgn(𝜃𝛾 ) <
0 (> 0), 𝛾 ∈ {𝑥, . . . ,𝑤}.

Model Ranks 𝜉𝑥 𝜉𝑦 𝜉𝑧 𝜉𝜔

BM25 10 -1.7000 0.2148↑ 0.1782↑
20 0.8050 0.3294↑ 0.0913↑

LM-JM 10 -0.2016 -0.1489 0.0324↑
20 -0.1347 -0.2177 0.0130↑

LM-Dir 10 -1.7479 0.1126↑ -0.0133
20 -0.9438 0.0250↑ -0.0133

DRMM 10 0.4490↓ -0.0512 0.0000 0.2235↓
20 0.4490↓ 0.0390 0.0000 0.0311↓

Table 2: Explaining across different Ranking Models (fi-
delity scores computed by Equation 13 are bold-faced).

𝑀1 𝑀2 𝛿𝑠 (𝐷,𝑀1) 𝛿𝑠 (𝐷,𝑀2) 𝜉𝑥 𝜉𝑦 𝜉𝑧

LM-JM BM25 0.2353 0.4099 1.7564 -0.0840 0.4215
LM-Dir LM-JM 0.1979 0.4095 -0.2656 0.1024 -0.1191
LM-Dir BM25 0.1959 0.3993 0.5364 0.0184 0.3711

subset of 50 queries from the training set. We removed queries for
each statistical model, we experimented with the optimal parameter
settings (grid search) on the set of 50 queries. Figure 1 shows the
distribution of the coefficient values for the individual components,
namely 𝑥 (term frequency) etc. for each query. To estimate the co-
efficient values, we set 𝑘 = 100 in Equation 6 for each query. Figure
1 shows that 𝜃𝑥 , i.e., the average coefficient value corresponding
to the term frequency (tf) feature, are positive indicating that each
model satisfies constraints ‘C1’ of [3] (increase in tf leads to in-
creasing document score). Moreover, a sub-linear slope (since these
values are mostly less than 1) indicates that the models also satisfy
‘C2’ of [3] (rate of change of increase in document score decreases
with increase in tf). Similarly, it can be seen from the negative
values of 𝜃𝑧 that an increase in document frequency (decrease in
informativeness) leads to a decrease in the document score.

Comparisons within a model. Table 1 analyzes the relative
differences in documents retrieved at positions 10 and 20 in compar-
ison to the top-retrieved document. We seek to identify arguments
tht could be provided to explain this observation. For the document
ranked at position 10, we see that the values with up-arrows (i.e.,
𝜉𝑦 > 0 and 𝜉𝑧 > 0) indicate that the increase of the 𝑦 (document
length) and the 𝑧 (document frequency) values in 𝐷10 (with respect

Figure 2: 𝜉𝑥 , 𝜉𝑦 and 𝜉𝑧 distributions (left-right) for different
rank pairs in BM25.

to 𝐷𝑡𝑜𝑝 ) contribute to decreasing its score. The bold-faced numbers
associated with an arrow (up/down) constitute a set of valid expla-
nations. Some more interesting observations are that in LM-Dir,
increase in document frequency (decrease of informativeness) is
the main contributing factor for retrieving 𝐷10 and 𝐷20 at lower
ranks as compared to 𝐷𝑡𝑜𝑝 , whereas the deciding factors in DRMM
were tf, document length and semantic similarity.

Comparisons across models. Table 2 shows that the decrease
in relative score for a document using BM25 as compared to LM-JM
can be attributed to the tf (𝑥 ) and document frequency (𝑧) factors.

In Figure 2, we show the fidelity score analysis for 𝑥 , 𝑦 and
𝑧 values in BM25 through heat-map. Darker shades correspond
to negative values for fidelity score. 𝑥 and 𝑦 axes correspond to
two different range of ranks in BM25. For each feature value we
show only those ranges of rank pairs where that particular feature
was the reason for ranking difference. For example, in the leftmost
figure, for 𝑖 = 0 to 9 and for 𝑗 = 35 to 45, term frequency (𝑥) was
the major reason for ranking difference. Most of the cells in the left
most figure are of lighter shade because of positive values of the
fidelity score for 𝑥 .
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